

Flow-Induced Voltage Generation by Driving Ionic Liquids over a Graphene Nano-Channel

<u>Yongji Guan¹</u>, Wenqiong Chen¹, Shimin Liu², Xiaoping Zhang^{1*} and Youquan Deng^{2*}

FPY

¹School of Information Science and Engineering, Lanzhou University ²Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences *Correspondence: Prof. Xiaoping Zhang, Prof. Youquan Deng *E-mail*: *zxp@lzu.edu.cn, ydeng@licp.cas.cn*

Introduction

Ionic Liquids (ILs)

- Soft functional materials
- Excellent physical and chemical properties

Task-specific application

Nanostructure

- Complex technical processes
- Expensive experimental equipment
- Molecular dynamics (MD) simulation

Energy Harvesting

- Powering the nanoelectromechnical systems (NEMSs)
- Bio-molecular sensing
- Biomedical fields

Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y., Nanoconfined Ionic Liquids. Chem. Rev. 2017, 117, 6755-6833
 Wang, Z. L., Self-Powered Nanosensors and Nanosystems. Adv. Mater. 2012, 24, 280-285.

Models and Methods

ILs + Graphene channel MD simulation (20 ns, 300 K) Acceleration: 0.001~0.2 nm ps⁻²

Models and Methods

Charge and number density distribution

APCIL-6

Models and Methods

***Average flow velocity**

The average flow velocities of anions and cations nonlinearly increase to saturation.

APCIL-6

***Flow-induced voltage**

The flow-induced voltages is about 2.1 μ V and tends to saturation as average flow velocity increases.

The flow-induced voltage (2.4 μ V) has a significant increase at T = 375 K.

APCIL-6

Channel size effect

APCIL-6

h = 1, 2, 3, 4, 5 nm

The average flow velocities of cations and anions increase as the graphene (b)²⁰ nano-channel size increases, eventually tending toward toward saturation.

November 1, 2018

***Channel size effect**

The flow-induced voltage increases from 1.9 to 2.1 μ V as the graphene nano-channel size increases from 1 to 5 nm, tending toward saturation as average flow velocity increases.

Graphene area effect

APCIL-6

S = 1, 4, 9, 16, 25 nm²

The average flow velocities of cations and anions increase as the graphene area (t decreases, eventually tending toward saturation.

Time (ps)

600

400

200

0

800

1000

***Graphene area effect**

The flow-induced voltage decreases from 2.3 to 2.1 μ V as the graphene area increases from 1 to 25 nm², then tending to saturation as average flow velocity increases.

Conclusions

Combing ILs and graphene channel to study the generation of flow-induced voltage using MD simulation

- Developing an advanced equation to calculate the flow-induced voltage on the nano-scale
- The flow-induced voltages increase from 2.1 to
 2.4 μV as temperature increases from 300 to
 375 K
- * The flow-induced voltages increase from 1.9 to 2.1 μV or decrease from 2.3 to 2.1 μV as channel size or graphene area increase from 1 to 5 nm or from 1 to 25 nm²

Acknowledgements

The National Key Research and Development Program of China (No. 2017YFA0403101) The National Natural Science Foundation of China (No. 21761132014)