Probing Nano-Wettability of Hydrophilic/Hydrophobic Ionic Liquids Using Molecular Dynamics Simulation 强不見

Yongji Guan, Qunfeng Shao, Xiaoping Zhang*

Institute of Modern Communication, School of Information Science and Engineering,

Email:guanyj16@lzu.edu.cn Lanzhou University

Introduction

Nano-wettability is a very important branch of science and has recently attracted a tremendous amount of attention due to its application in lubricant,¹ digital microfluidic devices,² bio-nano-electro mechanical systems (NEMSs)³ and membrane channels.⁴

In the present work a series of hydrophilic and hydrophobic 1-ethyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been employed to probe the wettability in nano-scale using molecular dynamics (MD) simulation. The simulation results confirm droplet size, intrinsic viscosity and simulated temperature play the dominant role in the wettability of ionic liquids (ILs) in nano-scale.

Simulations

The nano-wettability of hydrophilic and hydrophobic imidazolium based RTILs was probed by performing the MD simulations of the morphological transition of an isolated ILs droplet in the vacuum on a solid silicon substrate from the initial structure to its equilibrium state which is generally a quasi-hemispherical liquid droplet resting on top of the silicon substrate.

獨树一戲

Figure 1 Initial structure of the ensemble, the initial spherical droplet included 253 [Emim][BF₄] ion pairs which radius of the spherical droplet is 25Å, the solid substrate with dimension of $76.8 \times 153.6 \times 5.76 \text{Å}^3$ consists of 3200 silicon atoms.

Results and Discussion

Effect of the size of droplet on nano-wettability

Figure 1 The contact angles of [Emim][BF₄] droplet with different radius on the silicon surface at the equilibrium state. Lines are drawn only for guiding purposes.

 \succ The contact angles increase with increasing droplet size then

All MD simulations were carried out using the general purpose parallel MD simulation open-source package DL_POLY 4.06. After the simulation, the physical properties were characterized using the DL_POLY analysis tools, and the structures were visualized with a molecular graphics software named visual molecular dynamics (VMD).

Effect of the hydrophobicity and hydrophilicity on nano-wettability

Figure 2 The contact angles for hydrophilic ILs ([Emim][CI] and [Emim][BF₄]) and hydrophobic IL ([Emim][PF₆]), the radius for ILs droplet is 30Å.

Nano-wettability has little dependence on the hydrophobicity tend to be saturation and hydrophilicity

Effect of the intrinsic viscosity on nano-wettability

Figure 3 The contact angles for three kinds of ILs droplet with radius of 30Å on silicon surface: ▶represents different temperature (T=300K, 350K, 375K for $[Emim][BF_4]$, $[Emim][PF_6]$, [Emim][CI]), •represents same temperature (T=400K), where the bottom-left corner inset shows the D-value of the contact angle during different temperature. Lines are drawn only for guiding purposes.

Figure 4 The MSDs of imidazolium cations and anions for three ILs at t=400K, (a) represents [Emim][CI], where (b) and (c) represent [Emim][PF₆] and [Emim][BF₄] respectively, the radius for all ILs droplets is 30Å.

> The wettability of ILs nano-droplet decreases with the increasing of viscosity

Effect of the simulated temperature on nano-wettability

Figure 5 The equilibrium shapes of [Emim][BF₄] ILs droplet with radius of 20Å on silicon surface during different temperature.

> The wettability of ILs nano-droplet increases with the increasing of temperature then reaches saturation

Conclusions

- The contact angles increase remarkably with increasing size of ILs droplet during the smaller radius then tend to be saturation in the larger radius.
- The wettability of ILs nano-droplet decreases with the increasing of viscosity.
- Hydrophobicity and hydrophilicity of ILs have a trivial impact on wetting properties on the solid surface at the nanometer scale.
- \succ The wettability of ILs continuously enhances and eventually reaches the level of saturation with the increasing of temperature.

References

[1] S. Aparicio, and M. Atilhan, The Journal of Physical Chemistry C 117 (2013). [2] T. M. Squires, and S. R. Quake, Reviews of Modern Physics 77 (2005).

[3] D. J. Harrison et al., Science 261 (1993). [4] S. Sun, J. T. Y. Wong, and T.-Y. Zhang, Soft Matter 7 (2011).